Accepted Manuscript

Synergistic induction of heme oxygenase-1 by the components of an antioxidant supplement Protandim

Kalpana Velmurugan, Jawed Alam, Joe M. McCord, Subbiah Pugazhenthi

PII: S0891-5849(08)00673-4

DOI: doi: 10.1016/j.freeradbiomed.2008.10.050

Reference: FRB 9615

To appear in: Free Radical Biology and Medicine

Received date: 8 July 2008

Revised date: 23 September 2008 Accepted date: 31 October 2008

Please cite this article as: Kalpana Velmurugan, Jawed Alam, Joe M. McCord, Subbiah Pugazhenthi, Synergistic induction of heme oxygenase-1 by the components of an antioxidant supplement Protandim, *Free Radical Biology and Medicine* (2008), doi: 10.1016/j.freeradbiomed.2008.10.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synergistic induction of Heme oxygenase-1

Synergistic induction of heme oxygenase-1 by the components of an antioxidant supplement Protandim

Kalpana Velmurugan¹, Jawed Alam², Joe M. McCord³ and Subbiah Pugazhenthi¹

¹Division of Endocrinology, ³Division of Pulmonary Sciences, Department of Medicine, University of Colorado Denver, Aurora, CO and ¹Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO; ²Department of Molecular Genetics, Ochsner Medical Center, New Orleans, LA

ACKNOWLEDGEMENTS: This work was supported by grants from Juvenile diabetes Research Foundation (5-2005-1104, to S.P.), American Diabetes Association (1-06-JF-40, to S.P.) and LifeVantage Corp. (to S.P. and J.M.M.). We thank the support provided by Microscopy Core facility at Denver VA Medical Center.

Address for correspondence Subbiah Pugazhenthi, Ph.D. Division of Endocrinology, Department of Medicine, University of Colorado Denver P.O. Box 6511; Mail Stop 8106, Aurora, CO 80045, Phone: 303 399-8020 ext. 3004;

one: 303 399-8020 ext. 3004; Fax: 303 377 5686;

Email: subbiah.pugazhenthi@uchsc.edu

Running title: Synergistic induction of Heme oxygenase-1

Synergistic induction of Heme oxygenase-1

Abstract: Protandim is an antioxidant supplement that consists of five ingredients namely, Ashwagandha, bacopa extract, green tea extract, Silymarin, and curcumin, each with known therapeutic properties. Protandim was formulated with the objective of combining multiple phytochemicals at low nontoxic doses to gain synergy among them. A recent clinical study demonstrated the *in vivo* antioxidant effects of Protandim (FRBM, 40, 341-347, 2006). The objective of the present study was to determine if the components of Protandim induce heme oxygenase-1 (HO-1) in a synergistic manner in cultured MIN6 cells, a mouse β cell line and SK-N-MC cells, a human neuroblastoma cell line. When the components of Protandim were tested alone at low doses, curcumin showed minimal induction whereas the others were unable to induce HO-1 promoter. assayed by transient transfection. All components together however, produced a strongly synergistic induction of around 3-9 fold in a dose-dependent manner, greatly exceeding the sum of the parts. Similar findings were obtained in the expression of HO-1 at the mRNA and protein levels. Protandim-mediated HO-1 induction involved presence of ARE sites in HO-1 promoter and nuclear translocalization of the transcription factor Nrf2 that binds to ARE sites. Involvement of multiple signaling pathways including PI 3-kinase/Akt, p38MAPK and PKCδ in HO-1 induction seems to be the probable mechanism of synergy between the components of Protandim. There were significant increases in the levels of total glutathione in Protandim-treated cells. These findings suggest that use of a combination of phytochemicals may be an efficient method for the induction of antioxidant enzymes.

Synergistic induction of Heme oxygenase-1

INTRODUCTION

Oxidative stress plays a significant role in the progression of many diseases including diabetes, Alzheimer's disease and atherosclerosis [1-3]. Oxidative stress generally results from an imbalance between free radicals generated during normal cellular metabolism and the free radical or oxidant scavenging capacity of the endogenous antioxidant enzymes. Although attempts at stoichiometric neutralization of free radicals with dietary antioxidant supplements have been reported to have some beneficial effects [4], there are also many reports of failure to produce beneficial effect [5] and even reports of prooxidant effects [6]. Furthermore, it is clear that we rely on the endogenous antioxidant enzymes to protect our cells from oxidative stress, and that consumption of so-called antioxidant compounds in low stoichiometric amounts cannot serve this role. Much attention has been focused recently on naturally occurring polyphenolic compounds that are capable of inducing antioxidant enzymes [7]. Prevention of oxidative stress by phytochemicals has evolved as a promising therapeutic approach in the treatment of several diseases [8, 9].

Protandim is a dietary supplement designed to induce endogenous antioxidant enzymes. It consists of 5 herbal ingredients, namely, Silymarin from milk thistle (Silibum marianum), bacopa (Bacopa monniera) extract, Ashwagandha (Withania somnifera), green tea (Camilia sinesis) extract and curcumin from turmeric (Curcuma longa). The therapeutic properties of each of these herbs have been previously reported [9-11]. However, to gain optimal beneficial effects, the individual components may have to be used at pharmacological doses not easily achieved by oral administration, and

Synergistic induction of Heme oxygenase-1

which could cause toxic side effects. Therefore, Protandim was formulated with the concept of combining multiple phytochemicals at low doses to gain synergy among them. A recent study demonstrated that administration (675 mg/day for 120 days) of Protandim in human subjects resulted in 30-50% increases in the activities of antioxidant enzymes SOD and catalase in erythrocytes [12]. Furthermore, the age-dependent increase in circulating TBARS seen before treatment was completely suppressed after intake of Protandim. No undesirable side effects were observed suggesting that Protandim is a safe nutraceutical supplement.

In a recent study, we reported that curcumin, one of the ingredients of Protandim induces the expression of heme oxygenase-1 (HO-1) in mouse beta cells by a pathway involving the transcription factor Nrf2 and PI 3-kinase/Akt-mediated signaling pathway [13]. EGCG, the active constituent present in green tea has been also shown to induce HO-1 in endothelial cells [14]. However, there are no reports on the effects of the other three ingredients of Protandim on HO-1. We predicted that Protandim is likely to be a strong inducer of HO-1 because it is a phase 2 enzyme. HO-1 is an inducible rate-limiting enzyme which breaks down heme into carbon monoxide, iron and bilirubin. HO-1 is emerging as a novel therapeutic target in several disease models [15].

The objectives of the present investigation are to (a) develop a cell culture model to characterize the mechanism of synergy between the components of Protandim. (b) to determine if Protandim induces HO-1 in a synergistic manner through activation of multiple signaling pathways. We used MIN6 cells, a mouse β cell line and SK-N-MC cells, a neuroblastoma cell line to test the effects of Protandim to determine if supplement has potential beneficial effects in diabetes and Alzheimer's disease

Synergistic induction of Heme oxygenase-1

respectively. We demonstrate that the components of Protandim induce HO-1 through synergistic actions on multiple signaling pathways.

Synergistic induction of Heme oxygenase-1

MATERIALS AND METHODS

Materials: Minimum Essential medium Eagle, fetal bovine serum, streptomycin and penicillin were obtained from Life Technologies (Rockville, MD) and Gemini Bio Products (Woodland, CA). HO-1 antibody and Akt inhibitor IV were purchased from Calbiochem (La Jolla, CA). Nrf2 (H-300) antibody was from Santa Cruz Biotechnologies (Santa Cruz, CA). Enzyme inhibitors, SB203580, SP600125, rottlerin, LY294002, and U0126 were purchased from Biomol (Plymouth Meeting, PA). Plasmids for transfection experiments were purified using Qiagen's (Valencia, CA) Maxi kit. LipofectAMINE 2000 reagent was obtained from Invitrogen Life Technologies. The dual-luciferase assay kit was purchased from Promega (Madison, WI). Anti rabbit IgG linked to Cy3 was obtained from Jackson ImmunoResearch (West Grove, PA). All other reagents were obtained from Sigma (St. Louis, MO) unless otherwise specified.

Enriched fractions of Protandim: The dietary supplement (675 mg) Protandim (Lifeline Therapeutics, Inc., Denver, CO, USA) consists of five ingredients: 150 mg *Withania somnifera* powder (Ashwagandha); 150 mg *Bacopa monniera* (45% bacosides); 225 mg *Silibum marianum* (70–80% Silymarin); 75 mg *Camilia sinesis* (green tea, 98% polyphenols and 45% (-)-epigallocatechin-3-gallate); and 75 mg curcumin (95%) from turmeric (*Curcuma longa*). The alcohol extract of Protandim was prepared by shaking 675 mg of Protandim with 16.875 ml of 95% ethanol overnight at 4°C, centrifuged at 5000 RPM (4°C) for 5 min and the extract (40 mg/ml) was stored at -80°C. For studies on synergy, the individual components present in 675 mg of Protandim were extracted in the same volume of alcohol by a similar procedure. Parallel preparations of Protandim extracts were also prepared with one of the components

Synergistic induction of Heme oxygenase-1

omitted. The addition of the ethanolic extract of complete Protandim to cell culture medium to produce a Protandim concentration of 10 μg/ml resulted in the following concentrations of each of the putative active components: withanolides from *Withania somnifera*, 0.07 μM; bacopasides from *Bacopa monniera*, 1.1 μM; Silymarin from *Silibum marianum*, 5.5 μM; (-)-epigallocatechin-3-gallate from *Camilia sinesis*, 1.1 μM; and curcumin from *Curcuma longa*, 2.8 μM. Controls were treated with the same volume of alcohol used in the treated groups.

HO-1 promoters: Several HO-1 promoter constructs linked to a firefly luciferase reporter gene were generated as described previously [16]. The full length promoter construct pHO15luc was generated by cloning 15-kb promoter fragment of mouse *ho-1* gene into luciferase reporter gene vector pSK1luc. HO-1 promoter contains multiple antioxidant response elements, (ARE) at enhancer regions, E1 and E2. A 600-base pair (*Sacl/Sacl*) fragment (E1) of pHO15kluc was deleted to generate the plasmid pHOluc- Δ E1. The plasmid pHOluc- Δ E2 was generated by deletion of the 161-base pair *Afl*II/*Bsr*BI fragment (E2). Deletion of both of these fragments resulted in the construct, pHOluc-(Δ E1+ Δ E2).

Culture of MIN6 and SK-N-MC cells: SK-N-MC cells, a neuroblastoma cell line, were maintained in a DMEM supplemented with 10% FBS, 100 μ g/ml streptomycin, and 100 U/ml penicillin at 37° C in 5% CO₂/humidified air. MIN6 cells, a mouse pancreatic β-cell line obtained from Dr. Jun-ichi Miyazaki (Kyoto University, Japan) were cultured in DMEM containing 5.6 mM glucose, 10% FBS, 100 μ g/ml streptomycin, 100 U/ml

Synergistic induction of Heme oxygenase-1

penicillin, and 50 μM β-mercaptoethanol (BME) at 37°C in a humidified atmos phere of 5% CO₂. A low serum (0.1%) medium was used while exposing the cells to Protandim.

Transfection procedure: MIN6 or SK-N-MC cells were cultured to 70% confluence in 12 well dishes. Plasmid (1.5 μ g) and LipofectAMINE 2000 reagent (3 μ l) were separately diluted in 100 μ l of Opti-MEM and incubated for 5 min at room temperature (RT). After mixing, they were incubated at RT for another 20 min and the mixture was added to the cells. A constitutively active Renilla luciferase (pRL-TK-Luc) was included in the plasmids to correct for transfection efficiency. The transfected cells were cultured in low-serum (0.1%) medium with appropriate treatment for 12 h. The treated cells were washed with cold PBS and then lysed in 100 μ l of Passive Lysis Buffer (Promega). After freezing and thawing, the lysates were centrifuged (10,600 g; 20 min) to collect the supernatant. Firefly luciferase and Renilla luciferase activities from transfected cells were measured using Dual-Glo Luciferase Assay System (Promega). HO-1 promoter activity is defined as the ratio of firefly luciferase to Renilla luciferase activity.

Immunocytochemistry: SK-N-MC cells were cultured on coverslips to 70% confluence. They were incubated in the absence and presence of Protandim (40 μg /ml) for 6 h. The treated cells were fixed with 4% paraformaldehyde for 30 min at RT. Cells were washed with PBS and permeabilized by treating with 0.2% Triton X-100 and 5% BSA in PBS for 90 min at RT. They were incubated in the presence of Nrf2 antibody (1:200) at 4℃ overnight. After washing with PBS, the cells were exposed to anti-rabbit IgG linked to Cy3 along with 4,6-diamidino-2-phenylindole (DAPI; 2g/ml; nuclear

Synergistic induction of Heme oxygenase-1

staining) for 90 min at RT. The cells were then washed in PBS, mounted on slides with mounting medium, and examined by fluorescent microscopy.

Western blot analysis: After treatment with Protandim extracts, MIN6 and SK-N-MC cells were washed with ice-cold PBS. Cells were lysed with mammalian protein extraction reagent (M-PER, Pierce, Rockford, IL) containing phosphatase inhibitors and protease inhibitor cocktail. The protein content of lysate was measured [17]. Diluted samples containing equal amounts of protein were mixed with 2X Laemmli sample buffer and subjected to electrophoresis in a 12% SDS-polyacrylamide gels. After transfer to polyvinylidene difluoride membranes, the membranes were blocked with TBST [20 mM Tris HCl (pH 7.9), 8.5% NaCl, and 0.1% Tween 20] containing 5% nonfat dry milk at RT for 1 h and exposed to primary antibodies (1:1,000) in TBST containing 5.0% BSA at 4℃ overnight. After washing in blocking so lution, the membranes were exposed to secondary antibodies conjugated to alkaline phosphatase and developed with CDP-Star reagent (New England Biolabs, Beverly, MA, USA). The intensity of protein bands was visualized using Fluor-S Multilmager and Quantity One software from Bio-Rad. All densitometric values obtained for the HO-1 protein were normalized to βactin levels obtained on the same blot.

RNA isolation and real time quantitative RT-PCR: MIN6 and SK-N-MC cells cultured in 100 mm dishes were exposed to 40 μg/ml or 20 μg/ml Protandim respectively for 24 hours. RNA was isolated by Qiagen's RNeasy column method. The levels of HO-1 mRNA were examined by real-time quantitative RT-PCR using Taqman probes. The PCR reactions were monitored in real time in an ABI Prism 7700 sequence

Synergistic induction of Heme oxygenase-1

detector (Perkin Elmer Corp./Applied Biosystems). The sequences of primers and probes for HO-1 are as follows:

Mouse (MIN6 cells): Forward Primer: GTGATGGAGCGTCCACAGC

Reverse Primer: TGGTGGCCTCCTTCAAGG

TaqMan Probe: 5'- 6FAM- CGACAGCATGCCCCAGGATTTGTC -TAMRA-3'

Human (SK-N-MC cells): Forward Primer: AGGCCAAGACTGCGTTCCT

Reverse Primer: GGTGTCATGGGTCAGCAGCT

TagMan Probe: 5'- 6FAM-TCAACATCCAGCTCTTTGAGGAGTTGCAG-TAMRA-3'

Assay of glutathione: Total glutathione content in Protandim-treated cells was determined by a standard colorimteric method [18]. The treated cells were rinsed with ice-cold PBS, scraped off from the 100mm plate and suspended into 250 μ l of ice-cold phosphate buffer (0.1M, pH 7.4). The cell suspension was vortexed for 20 seconds, followed by sonication and centrifugation (2500 RPM for 5 min at 4°C). The cell lysate was mixed with equal volume of 10% sulphosalicyclic acid and the denatured protein was removed by centrifugation (20 min). 100 μ l of supernatant was treated with 450 μ l of 5, 5'-dithiobisnitro benzoic acid in 0.1 M phosphate buffer (0.2M, pH 8.0). The absorbance was read at 412 nm along with glutathione standards treated in the same way and the cellular total glutathione content was expressed as nmol/mg protein.

Statistical Analyses: Data are expressed as mean \pm SE. Statistical analysis in this study was performed by one-way ANOVA with Dunnett's multiple comparison test.

Synergistic induction of Heme oxygenase-1

Results:

Synergy between the components of Protandim in the induction of HO-1 promoter: Induction of HO-1 by Protandim was tested by transient transfection of its promoter linked to luciferase reporter gene in MIN6 cells, a mouse insulinoma cell line and in SK-N-MC cells, a human neuroblastoma cell line. Alcohol soluble fraction of Protandim induced HO-1 promoter in a dose dependent manner. A maximum induction of 3 fold was seen at 40 μg/ml in MIN6 cells whereas an 8.5 fold increase was seen in SK-N-MC cells at a lower dose of 20 µg/ml (Fig. 1). The decreased induction of HO-1 in the β cell line is not surprising because this cell type is known express antioxidant enzymes at low levels [1, 19]. Protandim consists of five ingredients namely, ashwagandha, bacopa, green tea, Silymarin and curcumin. Therefore, in parallel, we tested the effects of the alcohol soluble fraction of each of these components present in the corresponding dose of Protandim. Except curcumin, other ingredients did not induce HO-1 promoter significantly. Curcumin induced HO-1 promoter by 36% and 300% in MIN6 and SK-N-MC cells respectively at concentrations present in the maximum dose of Protandim. Therefore the effects of Protandim on HO-1 promoter are more than the sum of the effects of individual components suggesting excellent synergy among the phytochemicals. Our attempts to match the maximum induction of Protandim by increasing the dose of individual components failed because of toxicity at higher concentrations (results not shown).

Synergistic induction of HO-1 at the transcriptional level by Protandim: We further examined the expression of HO-1 at the mRNA level in MIN6 and SK-N-MC cells incubated in the presence of Protandim or its components at the respective maximum

Synergistic induction of Heme oxygenase-1

doses used for HO-1 promoter assays. HO-1 mRNA levels were determined by real-time quantitative RT-PCR analysis using a Taqman probe. In MIN6 cells, when the extracts of individual components present in 40 μg/ml of Protandim were tested, Silymarin and curcumin had a minimal effect on HO-1 induction (1.5 fold) while, the other three components treated individually failed to induce HO-1. However, treatment with Protandim extract increased the expression of HO-1 by 4.6 fold (Fig. 2A). In SK-N-MC cells, Protandim showed a 10 fold induction and curcumin showed a 2 fold induction, while the other components present in Protandim did not show any significant change in the HO-1 expression (Fig. 2B). These observations are similar to the findings on the activation of HO-1 promoter (Fig. 1).

Synergy among the components of Protandim in HO-1 induction at the protein levels: Protandim-mediated induction of HO-1 at the protein levels was examined by Western blot analysis. In both MIN6 cells and SK-N-MC cells, the HO-1 levels increased by 15-20 fold when the cells were incubated in the presence of Protandim at the respective optimal doses (Fig. 3). Among the individual components Silymarin (3-4 fold) and curcumin (6 fold) showed significant induction of HO-1. Overall, the extent of HO-1 induction by Protandim was significantly more when compared to induction at the promoter and mRNA levels especially in MIN6 cells. This observation suggests that Protandim might improve the stability of HO-1 mRNA. The results presented thus far have been in MIN6 and SK-N-MC to suggest that Protandim could reduce oxidative stress in diabetes (β cells) and during neurodegeneration. The results for subsequent experiments are presented for SK-N-MC cells alone to avoid redundancy even though similar observations were obtained with MIN6 also.

Synergistic induction of Heme oxygenase-1

Removal of any one of the components affects the efficiency of Protandim: To demonstrate synergy by a different approach, we tested the effects of Protandim in SK-N-MC cells by omitting one component at a time. When Silymarin or curcumin were omitted, the induction of HO-1 promoter was almost completely lost (Fig. 4A). Omission of Ashwagandha, bacopa or green tea from Protandim significantly reduced its induction of HO-1 by 25% to 40% (P<0.01; Fig 4A). It is interesting to note that these three ingredients when tested alone did not cause any significant induction whereas when omitted from the combination reduce the activity of Protandim significantly. Similar decreases at the protein level as determined by Western blot analysis were observed when each component was omitted (Fig 4B). These observations further confirmed that a combination of phytochemicals at low doses can induce the antioxidant enzyme HO-1 efficiently.

Protandim induces HO-1 mainly through Nrf2: HO-1 is known to be induced by a number of transcription factors including Nrf2, c-jun, NF-kB and CREB [20-22]. Several studies have reported that Nrf2 plays a major role through the E1 and E2 regions, each of which contains several antioxidant response elements (ARE). To determine if the synergy among the components of Protandim is due to the involvement of multiple transcription factors, we tested the effects of deletion of ARE site containing E1 and E2 regions. Deletion of E1 resulted in 30% decrease (P<0.01) in the induction of HO-1 promoter (Fig. 5A). Deletion of E2 did not decrease Protandim-mediated induction significantly. When both E1 and E2 were deleted, the activation of HO-1 promoter by Protandim decreased by 70%. This observation suggested that Protandim induces HO-1 primarily through ARE sites although the involvement of other response elements in

Synergistic induction of Heme oxygenase-1

HO-1 promoter cannot be ruled out. Next, to determine the role of the transcription factor Nrf2 which binds to ARE sites we took a cotransfection approach. Nrf2 is normally present in the cytoplasm bound to Keap1. Inducers of promoters with ARE sites dissociate Nrf2 from Keap1 and allow it to translocate to the nucleus. When HO-1-luc was cotransfected with a plasmid encoding Keap1, Protandim-induced HO-1 promoter activity decreased by 45% because overexpression of Keap1 can be expected to retain more of Nrf2 in the cytoplasm (Fig. 5B). Overexpression of dominant negative Nrf2 with deleted transactivation domain also decreased HO-1 promoter activation by 53% (Fig. 5B). These observations further suggest that Protandim-mediated HO-1 induction proceeds primarily through Nrf2.

Nuclear translocalization of Nrf2 by Protandim in SK-N-MC cells: Next we tested by immunofluorescent staining whether Nrf2 undergoes nuclear localization after treatment of SK-N-MC cells with Protandim (Fig. 6). Nrf2 stained with Cy3 was present mostly in cytoplasm of untreated cells. Culture of these cells with the alcohol soluble fraction of Protandim (20 μg/ml) for 6 h resulted in the appearance of Cy3 signal mostly in the nucleus. The red fluorescent stain of Nrf2 overlapped with DAPI stain (blue) for nucleus suggesting nuclear localization. This observation along with the findings from HO-1 promoter assay with ARE-site-deleted constructs (Fig. 5A) and cotransfection experiments (Fig. 5B) suggest that the components of Protandim act mainly through the transcription factor Nrf2. We had made similar observations with curcumin, an essential component of Protandim, in MIN6 cells previously [13]. These findings also suggest that the synergistic effect of Protandim components is not likely to be primarily through the involvement of multiple transcription factors.

Synergistic induction of Heme oxygenase-1

Multiple signaling pathways are involved in Protandim-mediated induction of HO-

1: Having shown that Protandim induces HO-1 mainly through Nrf2, we searched for other potential sites of synergy. Translocation of Nrf2 to the nucleus can be triggered by phosphorylation on serine 40 [23]. Involvement of multiple signaling pathways in Nrf2 phosphorylation and HO-1 induction have been previously reported [16, 24-26]. We hypothesized that the synergistic action of the phytochemicals present in Protandim could take place through activation of multiple signaling pathways. In order to identify the signaling pathway(s) involved in HO-1 promoter induction by Protandim, we used different pharmacological inhibitors that specifically block each of these pathways; 5-(2-Benzothiazolyl)-3-ethyl-2-[2-(methylphenylamino) ethenyl]-1-phenyl-1H benzimidazolium iodide (Akt inhibitor IV) for Akt, LY294002 for PI 3-kinase, SP600125 for JNK, U0126 for MEK/ERK, SB203580 for p38MAPK and rottlerin for PKCδ. Involvement of PI 3-kinase/Akt was suggested by significant (P<0.001) decrease in Protandim-induced increase in HO-1 protein levels in the presence of LY294002 and Akt inhibitor IV (Fig. 7). We had previously reported that curcumin and its analogues induce HO-1 by activating this pathway [13]. Interestingly in that study p38MAPK and PKCδ were not involved in HO-1 induction by curcumin whereas Protandim-mediated increase in HO-1 expression decreased by 50% in the presence of SB203580, an inhibitor of p38MAPK and rottlerin, an inhibitor of PKCδ. Therefore, the components of Protandim other than curcumin could be contributing to HO-1 induction through p38MAPK and PKCδ pathways. No significant effect on HO-1 induction by Protandim was observed in the presence of U0126 or SP600125 suggesting that MEK/ERK and JNK may not play a role in Protandim stimulated HO-1 expression. Our observations in

Synergistic induction of Heme oxygenase-1

this experiment suggest that the synergy among the components of Protandim in the induction of HO-1 through Nrf2 could be due to the involvement of multiple signaling pathways.

Elevation of glutathione content in Protandim-treated cells: To determine the functional outcome of induction of an antioxidant enzyme by Protandim, we examined the cellular content of glutathione which scavenges free radicals. There were significant (P<0.001) increases in the levels of total glutathione after exposure to Protandim. In MIN6 cells, 2-3 fold increase was observed after treatment with 10-20 μ g/ml of Protandim. SK-N-MC cells showed higher sensitivity to Protandim as in the case of HO-1. Elevation of glutathione content by 2-4 folds was observed in the presence of 5-10 μ g/ml concentrations of Protandim.

Synergistic induction of Heme oxygenase-1

Discussion:

The nutraceutical supplement Protandim has been shown to reduce the agedependent increase in the accumulation of circulating products of lipid peroxidation in healthy subjects [12]. In this study, we demonstrate that the phytochemical ingredients present in Protandim exert synergy in inducing heme oxygenase-1 (HO-1), a cytoprotective phase 2 enzyme, in cultured MIN6 and SK-N-MC cells. The effect of Protandim was significantly more than the sum of the effects of individual components. Omission of any one of the ingredients including those that did not have any independent effect reduced the activity of Protandim significantly. Curcumin was found to be the most active component of this supplement with respect to HO-1 induction. The induction by Protandim involved the presence of ARE sites in HO-1 promoter and the nuclear localization of the transcription factor Nrf2. Involvement of multiple signaling pathways mediated by PI 3-kinase/Akt, p38 MAPK and PKCδ appears to be the probable mechanism for the synergy among the components of Protandim. Furthermore, Protandim elevated the glutathione content of cells, a marker for the cellular defense against oxidative stress. This study suggests that induction of antioxidant enzymes by a combination phytochemicals at low doses is an efficient and safe approach to reduce oxidative stress in chronic diseases.

In response to oxidative stress and xenobiotic insult, phase 2 enzymes are induced as part of the cellular defense. The electrophiles generated by phase 1 enzymes (such as cytochrome P450s) are scavenged by phase 2 enzymes including HO-1, γ –glutamylcysteine ligase, glutathione S-transferase and NAD(P)H:quinone oxidoreductase [27]. These enzymes contain ARE sites in their promoter region and are

Synergistic induction of Heme oxygenase-1

induced by the transcription factor Nrf2. Because Protandim induces HO-1 through Nrf2, we can anticipate that it could induce other phase 2 enzymes as well although the degree of induction is likely to vary depending on the number of ARE sites in the promoter region. Coordinated induction of a family of enzymes with antioxidant and detoxification properties is likely to have therapeutic value. HO-1, in particular has emerged as an important mediator of cellular defense against wide ranging tissue injuries and has been suggested to be a therapeutic target in various disease models [15, 28, 29]. In addition to its antioxidant action by degradation of heme, HO-1 also exerts beneficial effects through the byproducts of heme degradation, namely CO and biliverdin [15]. The cytoprotective actions of HO-1 in pancreatic β cells which are known to express antioxidant enzymes at low levels have been well documented. For example, induction of HO-1 in mouse islets by protoporphyrin improves islet function and survival after transplantation [30]. HO-1 upregulation leads to protection of β cells from cytokines and Fas [30-32]. Overexpression of HO-1 in rat islets reduces lymphocyte infiltration in the transplanted islets suggesting anti-inflammatory effects [33].

In this study, we used a neuroblastoma cell line (SK-N-MC) and a mouse β cell line (MIN6) to test the induction of HO-1 by Protandim. Our main objective was to determine if Protandim could be used as an antioxidant supplement in the context of neurodegenerative diseases and in diabetes. The brain is vulnerable to oxidative stress because of its high glucose-driven metabolic rate, high polyunsaturated fatty acid content, and high enzymatically active transition metal content [34]. The brain (2-3% of body weight) consumes 20% of the oxygen supply to the body, and 1-2% of the total oxygen consumed will form reactive oxygen species (ROS). Oxidative stress and

Synergistic induction of Heme oxygenase-1

accumulation of free radical-induced damage is an important feature of aging. Markers of oxidative stress are found in aged rats, especially in those with impaired spatial learning [35]. Lipid peroxidation, DNA oxidation products and markers of protein oxidation accumulate in AD brains as a result of oxidative stress [36-39]. Tg2576 mice, a mouse model for AD treated with a combination antioxidant/anti-inflammatory agents have decreased protein carbonyls and decreased Aβ levels [40], suggesting that oxidative stress precedes AD pathology.

The pancreatic β cells are particularly vulnerable to oxidative stress-induced injury due to low level expression of antioxidant enzymes [1, 19]. Oxidative stress is known to play an important role in β cell dysfunction and loss in both types of diabetes. In type 1 diabetes, the cytokines released from immune cells that infiltrate islets generate free radicals including nitric oxide [41]. In type 2 diabetes, although insulin resistance is considered to be the primary defect, glucotoxicity resulting from chronic hyperglycemia is to known to cause β cell dysfunction and loss through generation of free radicals [42]. Thus antioxidant therapy is likely to be beneficial in improving β cell mass in diabetes. Furthermore, oxidative stress plays an important role in the loss of β cells in transplanted islets [43]. Islets are subjected to oxidative stress during isolation, storage and after transplantation. Overexpression of antioxidant enzymes in islets ex vivo has been shown to improve their function after transplantation [44, 45].

The biological actions of curcumin, Silymarin and EGCG have been extensively studied. Very limited information is available regarding the other two ingredients namely ashwagandha and Bacopa. Both are used in Ayurvedic medicine and studies have demonstrated their beneficial effects. Alcoholic extract of ashwagandha when

Synergistic induction of Heme oxygenase-1

administered in rats exerts neuroprotective effects against 6-hydroxydopamine induced oxidative stress [46]. The markers of oxidative stress were improved by Ashwagandha. Several studies have demonstrated the antioxidant effects of extract of *Bacopa monniera* in vivo [47-49]. The active glycosides from this herb have been isolated and characterized [50].

Although curcumin showed the maximum effects in the induction of HO-1, it will be difficult to predict the same with other antioxidant enzymes especially the ones not regulated by Nrf2. For example, SOD and catalase observed to be induced by Protandim in the previous study [12] do not have ARE sites in their promoter regions. Different components are likely to play a primary role with respect to different end points of oxidative stress. As indicated previously, the composition of Protandim was designed based on the vast amount of studies carried out with those phytochemicals. The *in vitro* cell culture model used in this study could be used to determine the role of different components of Protandim on diverse end points. We will be also able to design different combinations of phytochemicals depending on the objective with respect to different disease conditions.

Phosphorylation of Nrf2 on serine 40 results in its dissociation from Keap1 and translocation to nucleus [23]. Inducers of Nrf2-driven phase 2 enzymes have been reported to use multiple signaling pathways for Nrf2 phosphorylation. For example, signaling mediated by PI 3-kinase [13, 24], MEK/ERK [51], p38 MAPK [16], JNK [26] and Protein kinase C [52] have been shown to play a role in the induction of HO-1. In the present study, we observed significant decrease in Protandim-mediated HO-1 induction when PI 3-kinase, Akt, PKCδ or p38MAPK was inhibited (Fig. 7). In our

Synergistic induction of Heme oxygenase-1

previous report with curcumin, we did not observe a significant role for p38 MAPK and PKCδ played a minor role in the case of demethoxy curcuminoids [13]. Therefore it appears that components other than curcumin might be contributing to HO-1 induction through p38 MAPK and PKCδ. The concomitant stimulation of parallel signaling pathways seems most likely to be the source of the observed synergy among the components of Protandim.

The findings described in this study suggest that Protandim induces HO-1 through activation of Nrf2 by a mechanism involving multiple signaling pathways. Nrf2 is also known to induce several other antioxidant enzymes including enzymes involved in the synthesis of glutathione. Glutathione synthesis is regulated by γ glutamyl cysteine ligase which consists of a regulatory subunit (GCLM) and a catalytic subunit (GCLC). The expression of both GCLM and GCLC is regulated by the Keap1-Nrf2-ARE pathway [53, 54]. Significant increases in the cellular glutathione content were observed in Protandim-treated cells suggesting the induction of enzyme(s) involved in glutathione synthesis. This observation is of therapeutic significance because glutathione deficiency contributes to oxidative stress and plays an important role in the pathogenesis of many diseases [55].

Several studies have examined a possible link between consumption of diets rich in flavonoids and protection from diseases associated with oxidative stress [56, 57]. However doubts have been raised because of the low plasma concentrations of individual compounds after consumption through diet. These concentrations are significantly low when compared to those used in *in vitro* studies. Furthermore when higher pharmacological doses are used to demonstrate their effects *in vivo*, they cause

Synergistic induction of Heme oxygenase-1

toxic side effects. It is possible that the beneficial effects of dietary phytochemicals could result from the synergy between those compounds when used at low doses. Ayurvedic medicine also suggests synergy between components from one or more herbal preparations [58]. This possibility is evident from the findings of this study. The dose response of Protandim on HO-1 promoter activity also gives a sigmoidal curve which is a marker for synergy (Fig. 1). Even at 10 μ g/ml, Protandim is able to induce the HO-1 promoter. Curcumin, the primary inducer of HO-1, is present at a concentration of 1.05 μ g/ml or 2.8 μ M in a 10 μ g/ml extract of Protandim. This is significantly lower than the concentration of 20 μ M required to demonstrate an noticeable effect is our recent study [13]. The ability of curcumin to induce HO-1 at such low concentrations in the presence other ingredients strongly suggest that there is synergy among the phytochemicals.

Synergistic induction of Heme oxygenase-1

Figure Legends:

Figure 1: Synergistic induction of HO-1 promoter by Protandim components: The luciferase reporter gene pHO15luc was generated by cloning a 15-kb promoter fragment of mouse *ho-1* gene into the vector pSK1luc. MIN6 (A) and SK-N-MC (B) cells cultured in 12 dishes to 70% confluence were transfected with pHO15luc and a constitutively active renilla luciferase (pRL-TK-Luc; to correct for transfection efficiency). Six hours after transfection, the cells were exposed to alcohol-soluble fraction of Protandim or its constituents at increasing concentrations for another 18 h. Cell lysates were prepared for the assay of luciferase activities. The results are mean of four independent observations. * P< 0.01 and * P< 0.001 vs untreated control.

Figure 2. Synergy in the induction of HO-1 at the mRNA levels by Protandim components: MIN6 (Panel A) cells and SK-N-MC (Panel B) cells cultured in 100 mm dishes were exposed to Protandim (Pr) or its components (A: Ashwagandha; B: Bacopa; G: Green tea; S: Silymarin; C: Curcumin) at indicated concentrations for 24 hours. RNA was isolated by Qiagen's RNeasy column method. The mRNA levels of HO-1 were determined by real time quantitative RT-PCR using Taqman probe and expressed in atto gram (ag). The results are mean ± SE of four independent observations. * P<0.01 and **P<0.001 when compared to untreated control.

Figure 3: Synergistic increase in HO-1 protein by Protandim components: MIN6 (Panel A) and SK-N-MC (Panel B) cells were exposed Protandim (Pr) or its components (A: Ashwagandha; B: Bacopa; G: Green tea; S: Silymarin; C: Curcumin) for 24 h. The cell lysates were processed for the Western blot analysis of HO-1. The blots were reprobed for β Actin. The intensities of bands were quantitated by scanning in a

Synergistic induction of Heme oxygenase-1

MultiImager using Quantity one software (Bio-Rad) and HO-1 expression was corrected for β Actin levels. *P<0.01 and **P<0.001 when compared to untreated control.

Figure 4: Contribution by Protandim components in the synergistic induction of HO-1:

Panel A: SK-N-MC cells were transfected with a full-length promoter of HO-1 linked to firefly luciferase reporter and constitutively active renilla luciferase. Six hours after transfection, the cells were exposed to alcohol-soluble fraction of Protandim or Protandim minus one of its components for 18 h. Cell lysates were prepared for the assay of luciferase activities. Panel B: SK-N-MC cells cultured in the absence and presence of Protandim or Protandim minus one of its components for 24 h. The cell lysates were processed for the Western blot analysis of HO-1. The band intensities were quantified by scanning and HO-1 expression was corrected for β Actin levels.

-A: -Ashwagandha; -B: -Bacopa; -G: -Green tea; -S: -Silymarin; -C: -Curcumin; Pr: Protandim. The results are mean of four independent observations. * P< 0.001 vs untreated control. #P<0.01 and **P<0.001 vs Protandim at corresponding doses.

Figure 5. ARE site- and Nrf2-dependent induction of HO-1 promoter by Protandim:

A: The plasmids Δ (E1) and Δ (E2) were obtained by deletion of 600-base pair (*Sacl/Sacl*) fragment and 161-base pair *AflII/BsrBI* fragment respectively from the 15-kb promoter fragment of mouse *ho-1* gene, and were cloned into luciferase reporter gene. SK-N-MC cells cultured in 12 well dishes to 70% confluence were transfected with the indicated HO-1 promoter constructs linked to firefly luciferase along with constitutively active renilla luciferase using LipofectAMINE 2000 reagent. After 6 h of transfection, the cells were exposed to 20 μ g/ml of Protandim for another 18 h. Cell lysates were prepared and luciferase activities were measured. The ratios of activities of firefly

Synergistic induction of Heme oxygenase-1

luciferase and renilla luciferase were determined. The results are mean \pm SE of four independent observations. * P< 0.001 vs untreated control; # P < 0.01; **P<0.001 with respect to full length promoter activation by Protandim. **B:** SK-N-MC cells were transfected with either (1) full length promoter of HO-1 linked to firefly luciferase reporter and vector (pEF); or (2) the promoter/reporter construct plus an expression construct for Keap1 or 3) the promoter/reporter construct plus a dominant negative Nrf2 expression construct. After 6 h of transfection, the cells were exposed to 20 μ g/ml of Protandim for 18 h. Cell lysates were prepared for the assay of luciferase activities. The results are mean \pm SE of four independent experiments. * P< 0.001 vs untreated control; # P < 0.001 with respect to vector control.

Figure 6. Nuclear translocation of Nrf2 by Protandim: A: SK-N-MC cells cultured on cover slips were exposed to 20 μg/ml of Protandim. After 6 h, cells were fixed in 4% paraformaldehyde, permeabilized and immunostained for active Nrf2 (Cy3; red). The nuclei were stained with DAPI (blue). Images were examined by fluorescent microscopy. The merge of Cy3 and DAPI is shown as overlay. The images presented here are representative of multiple fields from three independent experiments.

Figure 7. Role of multiple signaling pathways on induction of HO-1 expression by Protandim: SK-N-MC cells were preincubated in the presence of 250 nM of Akt
inhibitor IV, 30 μM of LY294002, 1 μM of rottlerin, 10 μM of U0126 or 20 μM of
SB203580 for 20 μM of SP600125 for 30 min followed by exposure to 20 μg/ml of
Protandim for 24 h. **A:** Cell lysates were electrophoresed and immunoblotted for HO-1.
The blots were then reprobed with the antibody for β Actin. A representative of four blots is presented for each inhibitor. **B:** The intensities of bands were quantified by

Synergistic induction of Heme oxygenase-1

densitometry using Fluor-S Multilmager and Quantity One software from Bio-Rad. HO-1 levels were corrected for β Actin expression. * P<0.001 when compared to untreated control. # P<0.001 with respect to Protandim-treated cells in the absence of inhibitors.

Figure 8: Protandim-mediated increase in cellular total glutathione content: MIN6

(A) and SK-N-MC cells (B) cultured in 100 mm dishes to 70% confluence were exposed to indicated concentrations of Protandim for 24 h. Cell lysates were prepared for the assay of total glutathione. * P<0.001 when compared to untreated control.

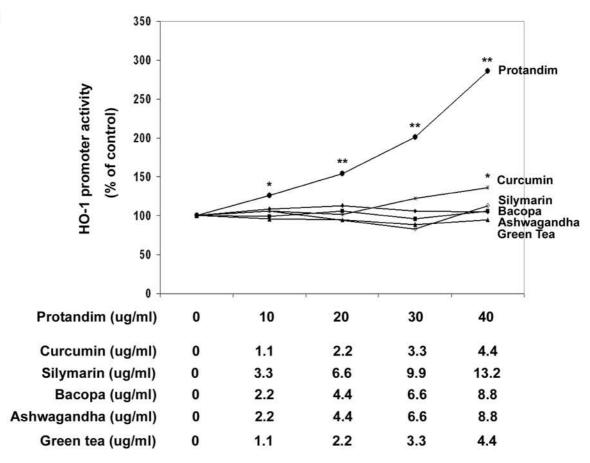
Synergistic induction of Heme oxygenase-1

References:

- [1] Robertson, R. P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. *J Biol Chem* **279**:42351-4; 2004.
- [2] Rottkamp, C. A.; Nunomura, A.; Raina, A. K.; Sayre, L. M.; Perry, G.; Smith, M. A. Oxidative stress, antioxidants, and Alzheimer disease. *Alzheimer Dis Assoc Disord* **14 Suppl** 1:S62-6; 2000.
- [3] Harrison, D.; Griendling, K. K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. *Am J Cardiol* **91**:7A-11A; 2003.
- [4] Moreira, P. I.; Smith, M. A.; Zhu, X.; Honda, K.; Lee, H. G.; Aliev, G.; Perry, G. Oxidative damage and Alzheimer's disease: are antioxidant therapies useful? *Drug News Perspect* **18**:13-9; 2005.
- [5] Bjelakovic, G.; Nikolova, D.; Gluud, L. L.; Simonetti, R. G.; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. *Jama* **297**:842-57; 2007.
- [6] Podmore, I. D.; Griffiths, H. R.; Herbert, K. E.; Mistry, N.; Mistry, P.; Lunec, J. Vitamin C exhibits pro-oxidant properties. *Nature* **392**:559; 1998.
- [7] Wu, L.; Noyan Ashraf, M. H.; Facci, M.; Wang, R.; Paterson, P. G.; Ferrie, A.; Juurlink, B. H. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. *Proc Natl Acad Sci U S A* **101**:7094-9; 2004.
- [8] Juurlink, B. H. Therapeutic potential of dietary phase 2 enzyme inducers in ameliorating diseases that have an underlying inflammatory component. *Can J Physiol Pharmacol* **79**:266-82; 2001.
- [9] Joe, B.; Vijaykumar, M.; Lokesh, B. R. Biological properties of curcumin-cellular and molecular mechanisms of action. *Crit Rev Food Sci Nutr* **44**:97-111; 2004.
- [10] Kishore, K.; Singh, M. Effect of bacosides, alcoholic extract of Bacopa monniera Linn. (brahmi), on experimental amnesia in mice. *Indian J Exp Biol* **43**:640-5; 2005.
- [11] Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M. B. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. *J Neurochem* **88**:1555-69; 2004.
- [12] Nelson, S. K.; Bose, S. K.; Grunwald, G. K.; Myhill, P.; McCord, J. M. The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. *Free Radic Biol Med* **40**:341-7; 2006.
- [13] Pugazhenthi, S.; Akhov, L.; Selvaraj, G.; Wang, M.; Alam, J. Regulation of Heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI 3-kinase/Aktmediated pathway in mouse beta cells. *Am J Physiol Endocrinol Metab*; 2007.
- [14] Wu, C. C.; Hsu, M. C.; Hsieh, C. W.; Lin, J. B.; Lai, P. H.; Wung, B. S. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. *Life Sci* **78**:2889-97; 2006.
- [15] Ryter, S. W.; Alam, J.; Choi, A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. *Physiol Rev* **86**:583-650; 2006.
- [16] Alam, J.; Wicks, C.; Stewart, D.; Gong, P.; Touchard, C.; Otterbein, S.; Choi, A. M.; Burow, M. E.; Tou, J. Mechanism of heme oxygenase-1 gene activation by cadmium in

Synergistic induction of Heme oxygenase-1

- MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. *J Biol Chem* **275**:27694-702; 2000.
- [17] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. *Anal Biochem* **72**:248-254; 1976.
- [18] Anderson, M. E. Determination of glutathione and glutathione disulfide in biological samples. *Methods Enzymol* **113**:548-55; 1985.
- [19] Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. *Diabetes* **46**:1733-42; 1997.
- [20] Alam, J.; Stewart, D.; Touchard, C.; Boinapally, S.; Choi, A. M.; Cook, J. L. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. *J Biol Chem* **274**:26071-8; 1999.
- [21] Gong, P.; Stewart, D.; Hu, B.; Vinson, C.; Alam, J. Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite. *Arch Biochem Biophys* **405**:265-74; 2002.
- [22] Hock, T. D.; Liby, K.; Wright, M.; McConnell, S.; Schorpp-Kistner, M.; Ryan, T. M.; Agarwal, A. JunB and JunD regulate human heme oxygenase-1 gene expression in renal epithelial cells. *J Biol Chem*; 2007.
- [23] Itoh, K.; Tong, K. I.; Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. *Free Radic Biol Med* **36**:1208-13; 2004.
- [24] Martin, D.; Rojo, A. I.; Salinas, M.; Diaz, R.; Gallardo, G.; Alam, J.; De Galarreta, C. M.; Cuadrado, A. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. *J Biol Chem* **279**:8919-29; 2004.
- [25] Kronke, G.; Bochkov, V. N.; Huber, J.; Gruber, F.; Bluml, S.; Furnkranz, A.; Kadl, A.; Binder, B. R.; Leitinger, N. Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. *J Biol Chem* **278**:51006-14; 2003.
- [26] Wu, C. C.; Hsieh, C. W.; Lai, P. H.; Lin, J. B.; Liu, Y. C.; Wung, B. S. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein. *Toxicol Appl Pharmacol* **214**:244-52; 2006.
- [27] Prestera, T.; Holtzclaw, W. D.; Zhang, Y.; Talalay, P. Chemical and molecular regulation of enzymes that detoxify carcinogens. *Proc Natl Acad Sci U S A* **90**:2965-9; 1993.
- [28] Stocker, R.; Perrella, M. A. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? *Circulation* **114**:2178-89; 2006.
- [29] Deshane, J.; Wright, M.; Agarwal, A. Heme oxygenase-1 expression in disease states. *Acta Biochim Pol* **52**:273-84; 2005.
- [30] Pileggi, A.; Molano, R. D.; Berney, T.; Cattan, P.; Vizzardelli, C.; Oliver, R.; Fraker, C.; Ricordi, C.; Pastori, R. L.; Bach, F. H.; Inverardi, L. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. *Diabetes* **50**:1983-91; 2001.
- [31] Tobiasch, E.; Gunther, L.; Bach, F. H. Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. *J Investig Med* **49**:566-71; 2001.


Synergistic induction of Heme oxygenase-1

- [32] Ribeiro, M. M.; Klein, D.; Pileggi, A.; Molano, R. D.; Fraker, C.; Ricordi, C.; Inverardi, L.; Pastori, R. L. Heme oxygenase-1 fused to a TAT peptide transduces and protects pancreatic beta-cells. *Biochem Biophys Res Commun* **305**:876-81; 2003.
- [33] Li, Y.; Li, G.; Dong, W.; Chen, J.; Lu, D.; Tan, J. Transplantation of rat islets transduced with human heme oxygenase-1 gene using adenovirus vector. *Pancreas* **33**:280-6; 2006.
- [34] Behl, C. Amyloid beta protein toxicity and oxidative stress in Alzheimer's disease. *Cell Tissue Res* **290**:471-480; 1997.
- [35] Nicolle, M. M.; Gonzalez, J.; Sugaya, K.; Baskerville, K. A.; Bryan, D.; Lund, K.; Gallagher, M.; McKinney, M. Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. *Neuroscience* **107**:415-31; 2001.
- [36] Markesbery, W. R. Oxidative stress hypothesis in Alzheimer's disease. *Free Radical Biology & Medicine* **23**:134-147; 1997.
- [37] Smith, M. A.; Rottkamp, C. A.; Nunomura, A.; Raina, A. K. Oxidative stress in Alzheimer's disease. *Biochim Biophys Acta* **1502**:139-144; 2000.
- [38] Keller, J. N.; Schmitt, F. A.; Scheff, S. W.; Ding, Q.; Chen, Q.; Butterfield, D. A.; Markesbery, W. R. Evidence of increased oxidative damage in subjects with mild cognitive impairment. *Neurology* **64**:1152-6; 2005.
- [39] Hensley, K.; Hall, N.; Subramaniam, R.; Cole, P.; Harris, M.; Aksenov, M.; Aksenova, M.; Gabbita, S. P.; Wu, J. F.; Carney, J. M.; et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. *J Neurochem* **65**:2146-56; 1995.
- [40] Yao, Y.; Chinnici, C.; Tang, H.; Trojanowski, J. Q.; Lee, V. M.; Pratico, D. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. *J Neuroinflammation* 1:21; 2004.
- [41] Darville, M. I.; Eizirik, D. L. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. *Diabetologia* **41**:1101-8; 1998.
- [42] Robertson, R. P.; Harmon, J. S. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet beta cell. *Free Radic Biol Med* **41**:177-84; 2006.
- [43] Emamaullee, J. A.; Shapiro, A. M. Interventional strategies to prevent beta-cell apoptosis in islet transplantation. *Diabetes* **55**:1907-14; 2006.
- [44] Bertera, S.; Crawford, M. L.; Alexander, A. M.; Papworth, G. D.; Watkins, S. C.; Robbins, P. D.; Trucco, M. Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. *Diabetes* **52**:387-93; 2003.
- [45] Robertson, R. P.; Harmon, J. S. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. *FEBS Lett* **581**:3743-8; 2007.
- [46] Ahmad, M.; Saleem, S.; Ahmad, A. S.; Ansari, M. A.; Yousuf, S.; Hoda, M. N.; Islam, F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. *Hum Exp Toxicol* **24**:137-47; 2005.
- [47] Dhanasekaran, M.; Tharakan, B.; Holcomb, L. A.; Hitt, A. R.; Young, K. A.; Manyam, B. V. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. *Phytother Res* **21**:965-9; 2007.
- [48] Jyoti, A.; Sharma, D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. *Neurotoxicology* **27**:451-7; 2006.

Synergistic induction of Heme oxygenase-1

- [49] Russo, A.; Izzo, A. A.; Borrelli, F.; Renis, M.; Vanella, A. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. *Phytother Res* **17**:870-5; 2003.
- [50] Pawar, R. S.; Khan, S. I.; Khan, I. A. Glycosides of 20-deoxy derivatives of jujubogenin and pseudojujubogenin from Bacopa monniera. *Planta Med* **73**:380-3; 2007.
- [51] Papaiahgari, S.; Kleeberger, S. R.; Cho, H. Y.; Kalvakolanu, D. V.; Reddy, S. P. NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. *J Biol Chem* **279**:42302-12; 2004.
- [52] Huang, H. C.; Nguyen, T.; Pickett, C. B. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. *Proc Natl Acad Sci U S A* **97**:12475-80; 2000.
- [53] Erickson, A. M.; Nevarea, Z.; Gipp, J. J.; Mulcahy, R. T. Identification of a variant antioxidant response element in the promoter of the human glutamate-cysteine ligase modifier subunit gene. Revision of the ARE consensus sequence. *J Biol Chem* **277**:30730-7; 2002.
- [54] Mulcahy, R. T.; Wartman, M. A.; Bailey, H. H.; Gipp, J. J. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. *J Biol Chem* **272**:7445-54; 1997.
- [55] Wu, G.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D. Glutathione metabolism and its implications for health. *J Nutr* **134**:489-92; 2004.
- [56] Lotito, S. B.; Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? *Free Radic Biol Med* **41**:1727-46; 2006.
- [57] Halliwell, B.; Rafter, J.; Jenner, A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? *Am J Clin Nutr* **81**:268S-276S; 2005.
- [58] Garodia, P.; Ichikawa, H.; Malani, N.; Sethi, G.; Aggarwal, B. B. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. *J Soc Integr Oncol* **5**:25-37; 2007.

A: MIN6

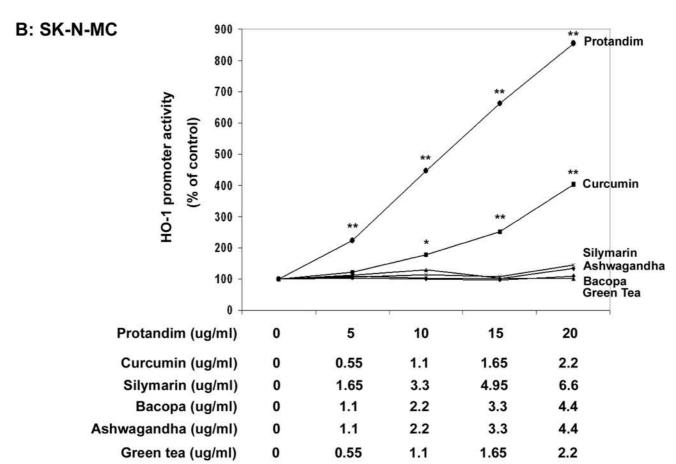


Figure 1

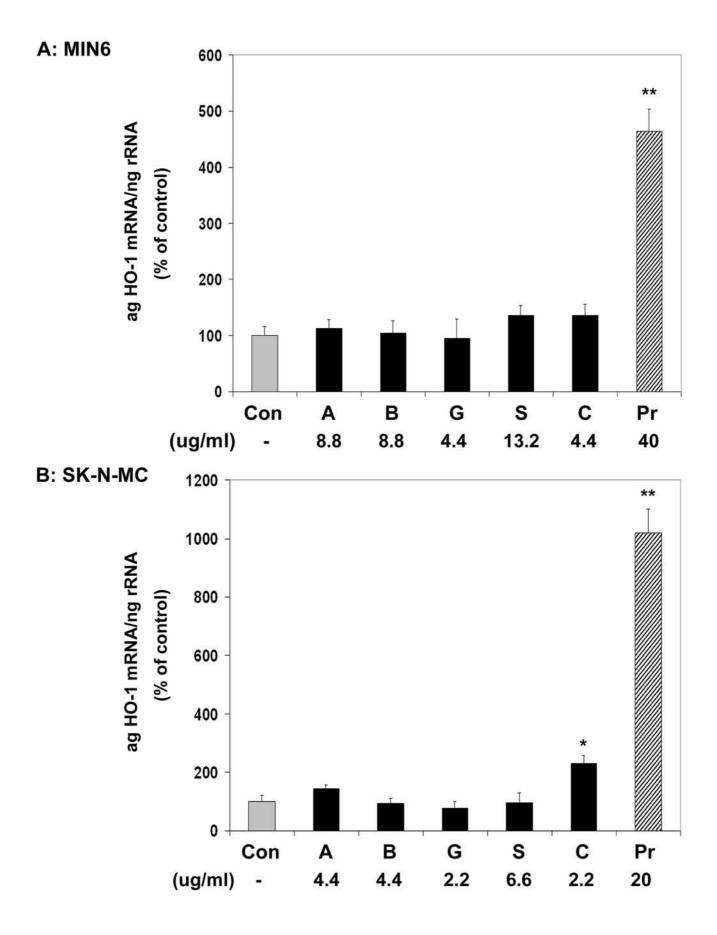


Figure 2



Figure 3

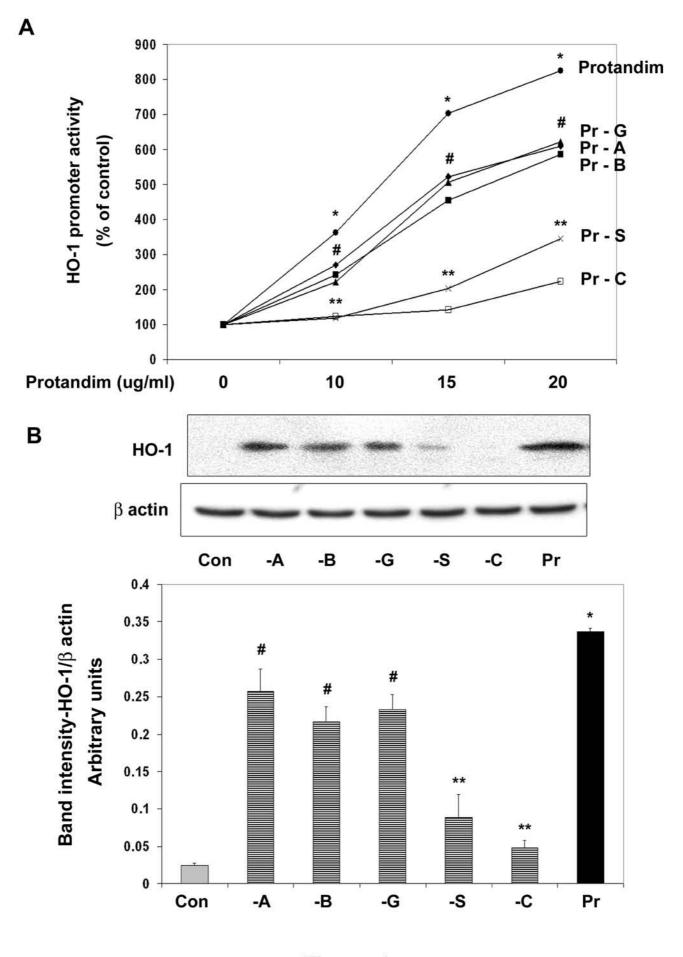
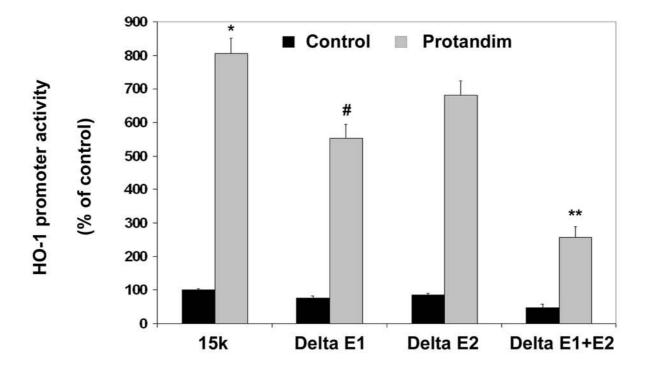



Figure 4

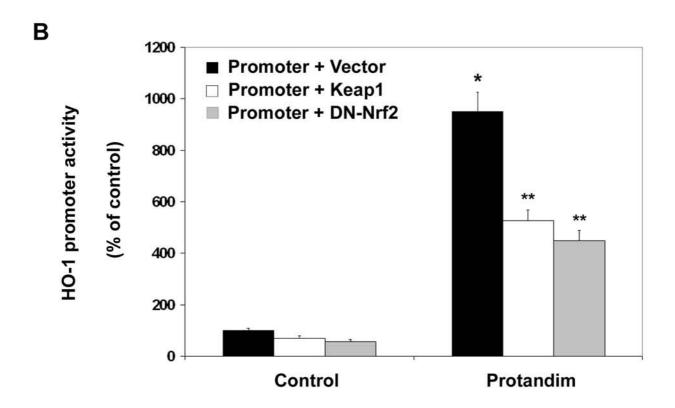


Figure 5

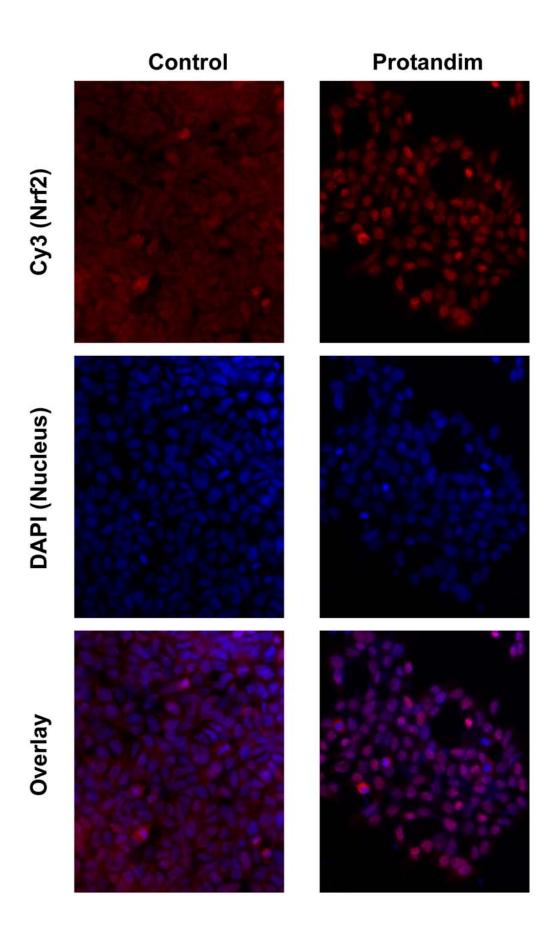


Figure 6

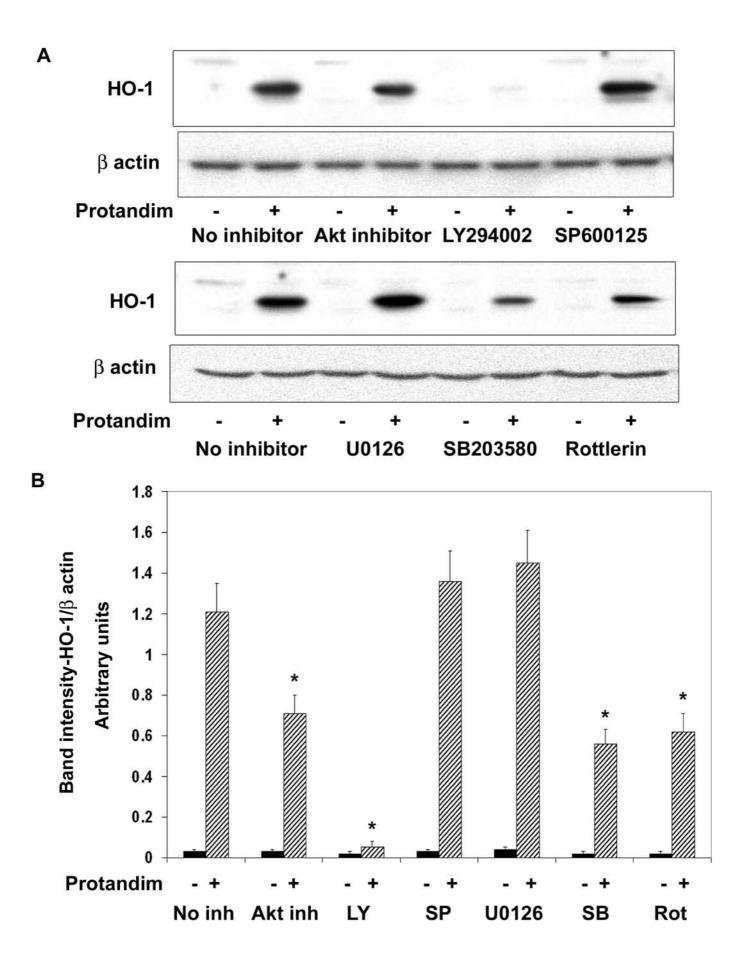
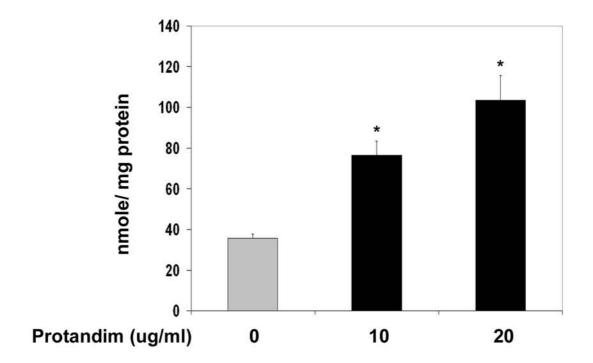



Figure 7

A: MIN6

B: SK-N-MC

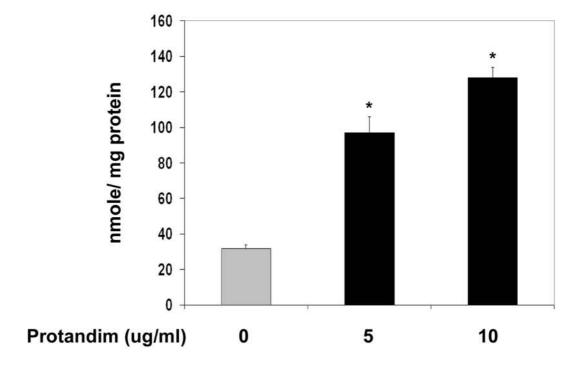


Figure 8